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We study and use overlapping triangular finite elements enriched by trigonometric functions and impli-
cit time integration to solve transient wave propagations in inhomogeneous media. We show explicitly
that the total dispersion error of the calculated solutions can be split into two parts, the spatial error
and temporal error. The study of the spatial dispersion error shows the effectiveness of the enriched over-
lapping finite elements compared to the traditional finite elements and the overlapping finite elements
without enrichment. The study of the temporal error of the Bathe time integration scheme shows mono-
tonic convergence to zero with decreasing time step size. The result is that we see monotonic conver-
gence to exact solutions as the mesh of enriched overlapping finite elements is refined and the time
step is decreased. We demonstrate the effectiveness of using the proposed scheme in the solution of
waves traveling in inhomogeneous media at different speeds, where reflected and transmitted waves
are predicted accurately by ‘‘simply” using a fine enough mesh and small enough time step.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The solution of transient wave propagation problems is of great
importance in practical engineering analyses. Exact solutions can
only be obtained for relatively simple problems, such as a single
wave propagating in a one-dimensional space. Solutions of waves
in complex geometric shapes can only be obtained by resorting
to numerical methods.

The classical finite element method is a popular and widely
used numerical approach for solving transient wave propagation
problems. However, the solutions using the standard method suf-
fer from significant dispersion errors induced by the spatial dis-
cretizations [1–5]. As a result, inaccurate numerical solutions are
frequently obtained, especially in the relatively high wave number
range. It is also found that the solutions show significant numerical
anisotropy [5–7], that is, the accuracy of solutions depends on the
directions of wave propagations even when the medium is isotro-
pic and a seemingly uniform mesh is used.

Significant research efforts have focused on reducing the disper-
sion error in the solution of transient wave propagations in solids
and various methods have been proposed, see e.g. [8–14], includ-
ing the spectral element method, see e.g. [15–18]. This scheme is
a higher-order numerical technique combining spectral methods
and the classical finite element discretization. The spectral element
method can be used to solve problems with much less numerical
dispersion error than the traditional finite element method; how-
ever, the procedure is difficult to use to solve general two- and
three-dimensional problems in complex geometries. This limita-
tion significantly impedes its wider application in practical engi-
neering computations.

The method of finite spheres [19,20], which is a typical mesh-
free numerical method, has also been proposed for wave propaga-
tion problems [12,13]. If uniform spatial discretizations are
employed, the method of finite sphere is quite effective in elimi-
nating the numerical dispersion error and numerical anisotropy.
However, a main shortcoming of the method is that a very expen-
sive numerical integration is required in constructing the system
matrices for non-uniform spatial discretizations.

Recently, a new paradigm of using ‘‘overlapping elements” was
proposed for general static and dynamic analyses of solids and
structures [21–25]. Numerical results show that the procedure
can provide much more accurate solutions than the traditional
finite element method without an expensive computational effort.
Quite importantly, it was shown that the predictive behavior of the
overlapping finite elements is almost insensitive to the geometric
distortions of the mesh. The reason is that the local interpolations
used in the method are not affected by (reasonable) geometric dis-
tortions of the mesh. This property is very valuable, significantly
distinguishes the overlapping finite element method from the tra-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2020.106273&domain=pdf
https://doi.org/10.1016/j.compstruc.2020.106273
mailto:kjb@mit.edu
https://doi.org/10.1016/j.compstruc.2020.106273
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


Fig. 1. General problem domain with different media.

Fig. 2. The uniform mesh with triangular elements for dispersion analysis.

Fig. 3. Dispersion errors induced by spatial discretizations in various wave
propagation directions: (a) FEM; (b) OFEM; (c) EOFEM.
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ditional finite element method, and makes the procedure an
important ingredient in the AMORE scheme [24,25].

Kim et al. successfully used overlapping finite elements
enriched by trigonometric functions to solve transient wave prop-
agations in homogeneous media [14]. The numerical results
demonstrated that the proposed enriched overlapping finite ele-
ment method with the Bathe time integration scheme shows sev-
eral excellent but related solution properties for wave propagation
problems. The key property is that the solutions using the scheme
monotonically converge to the exact solution as the element size
and time step decrease. Namely, when using a sufficiently fine
mesh and small time step, the numerical dispersion error and
numerical anisotropy are small, which means also that when mul-
tiple waves travel through the medium, these can all be solved for
accurately. The property of monotonic convergence is very useful
in practical engineering computations because accurate solutions
can be reached by ‘‘simply” using a sufficiently fine mesh (as in sta-
tic analyses) and a sufficiently small time step.

We focus in this paper on exploring the application of the ‘en-
riched overlapping finite elements’ to solve transient wave propa-
gation problems in inhomogeneous media. Our study adds to the
results published earlier by Kim et al. [14] who considered homo-
geneous media. We give now new insights regarding the disper-
sion errors, and also show that using the enriched overlapping
finite element discretization provides much more accurate solu-
tions than when using traditional finite elements or the overlap-
ping finite elements without enrichment. Based on our
observations we can expect that the overlapping finite element
method using enrichments has much potential in solving complex
wave propagation problems involving also anisotropic and com-
posite media.
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2. Governing equations of wave propagation in inhomogeneous
media.

We consider a general problem domain X ¼ X1 [X2 consisting
of two sub-domains filled with two different media, as shown in
Fig. 1. The governing wave equations are given as

r2u1 � 1
c2
1

€u1 ¼ 0; in X1

r2u2 � 1
c22
€u2 ¼ 0; in X2

8<: ð1Þ
Fig. 4. Dispersion error of the standard FEM with Bathe time integration scheme for diffe
in which uI (I = 1, 2) is the solution variable of wave propagation
(such as pressure [26] or displacement [14]) in the sub-domains
XI , I = 1, 2; r2 is the Laplace operator, cI (I = 1, 2) is the wave prop-
agation velocity in the different media, and an overdot represents a
derivative with respect to time.

On the interface C of the two media, the solution needs to sat-
isfy the following interface conditions

u1 ¼ u2

v1 ¼ v2

�
; on C ð2Þ
rent CFL numbers: (a) h ¼ 45
�
; (b) h ¼ 22:5

�
; (c) h ¼ 0

�
; (d) h ¼ �22:5

�
; (e) h ¼ �45

�
.



Fig. 5. Dispersion error of the standard OFEM with Bathe time integration scheme for different CFL numbers: (a) h ¼ 45
�
; (b) h ¼ 22:5

�
; (c) h ¼ 0

�
; (d) h ¼ �22:5

�
; (e)

h ¼ �45
�
.
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in which v I (I = 1, 2) are the particle velocities on the interface C.
These particle velocities are defined using normal directions to
the interface.

For the wave propagation of pressure in an ideal acoustic fluid,
the relationship between pressure u and particle velocity v is given
by

ru � n
q

¼ _v ð3Þ

in which n is the outward normal unit vector to the interface and q
is the density of the acoustic fluid.
For the wave propagation in a pre-stressed membrane, the
relationship between displacement u and particle velocity v is
given by

cru � n� v ¼ 0 ð4Þ
in which c is the wave propagation velocity.

Using Eqs. (3) and (4), the interface conditions shown in Eq. (2)
can be written as

u1 ¼ u2

ru1 � n1ð Þ � a1 þ ru2 � n2ð Þ � a2 ¼ 0

�
; on C ð5Þ



Fig. 6. Dispersion error of the EOFEM with Bathe time integration scheme for different CFL numbers: (a) h ¼ 45
�
; (b) h ¼ 22:5

�
; (c) h ¼ 0

�
; (d) h ¼ �22:5

�
; (e) h ¼ �45

�
.
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in which aI ¼ 1
qI
(I = 1, 2) for the propagation of pressure in an ideal

acoustic fluid, aI ¼ cI (I = 1, 2) for the wave propagation in pre-
stressed membranes, and n1;n2 are the unit outward normal vec-
tors to the interface for the sub-domains XI , I = 1, 2, respectively
(see Fig. 1). The directions of the normal vectors are important to
be able to write Eq. (5).

Using the principle of virtual work for Eq. (1), we have [26]

X2
I¼1

Z
XI

u
� r2uI � 1

c2I
€uI

� �
dX ¼ 0 ð6Þ

where u
�

is the arbitrary ‘‘virtual pressure/displacement
distribution”.
Performing, as usual, integration by parts and using the diver-
gence theorem, we obtainX2
I¼1

Z
XI

ru
� �ruIdXþ 1

c2I

Z
XI

u
�
€uIdX�

Z
CN

u
� ruI � nIð ÞdC

� �
¼ 0

ð7Þ
in which we have on CN the imposed Neumann boundary condition.

The principle of virtual work is equivalent to invoking the total
potential energy P corresponding to Eq. (7). We use P and intro-
duce the interface conditions of Eq. (2) by a Lagrange multiplier k

P� ¼ P�
Z
C
k ru1 � n1ð Þ � a1 þ ru2 � n2ð Þ � a2ð ÞdC ð8Þ



Fig. 7. Dissipation of the standard FEM with Bathe time integration scheme: (a) CFL = 1; (b) CFL = 0.5; (c) CFL = 0.2; (d) CFL = 0.1.
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Invoking dP� = 0 and using the finite element interpolations,
the corresponding matrices are obtained

1
c21

R
X1

HT
f 1
Hf 1

€U1dXþ R
X1

rHf 1

� �TrHf 1U1dX

� R
CN

HT
f 1

ru1 � n1ð ÞdC� R
C rHf 1

� �T � n1Hka1kdC ¼ 0

1
c2
2

R
X2

HT
f 2
Hf 2

€U2dXþ R
X2

rHf 2

� �TrHf 2U2dX

� R
CN

HT
f 2

ru2 � n2ð ÞdC� R
C rHf 2

� �T � n2Hka2kdC ¼ 0

� R
C H

T
kn1 � rHf 1

� �
a1U1dC� R

C H
T
kn2 � rHf 2

� �
a2U2dC ¼ 0

8>>>>>>>>>>><>>>>>>>>>>>:
ð9Þ

in which Hf 1 , Hf 2 and Hk contain the interpolation functions corre-
sponding to the two sub-domains X1 and X2 and the interfaces C
and CN (see Fig. 1) and U1; U2 ; k are the unknown nodal values to
be calculated.

The above equations can be written as

M1 0 0
0 M2 0
0 0 0

264
375 €U1

€U2

€k

264
375þ

K1 0 A
0 K2 G
AT GT 0

264
375 U1

U2

k

264
375 ¼

R1

R2

0

264
375 ð10Þ

in which

M1 ¼ 1
c2
1

R
X1
HT

f 1
Hf 1dX; M2 ¼ 1

c2
2

R
X2

HT
f 2
Hf 2dX

K1 ¼
R
X1

rHf 1

� �TrHf 1dX; K2 ¼
R
X2

rHf 2

� �TrHf 2dX

A¼�R
C rHf 1

� �T �n1Hka1dC; G¼�R
C rHf 2

� �T �n2Hka2dC

R1 ¼
R
CN

HT
f 1

ru1 �n1ð ÞdC; R2 ¼
R
CN

HT
f 2

ru2 �n2ð ÞdC

ð11Þ
3. The interpolation scheme of enriched overlapping elements

We use the enriched triangular overlapping elements [21–24].
For every overlap region with three nodes I, L, M the interpolation
of the solution variable u is given by

uh xð Þ ¼ qIuI þ qLuL þ qMuM ð12Þ
in which, with J = I, L, M, the qJ are the new interpolation functions
and the uJ are the nodal unknowns which can be functions.

The three new interpolation functions are given by

qJ ¼ /I
J hI þ /L

J hL þ /M
J hM ð13aÞ

where with J, K = I, L, M

/K
J ¼

X6
i¼1

ĥi/
K
Ji ð13bÞ

in which hI , hL and hM are the usual shape functions of the standard

three-node linear triangular element, ĥi is the standard shape func-
tion of the six-node triangular element, and /K

Ji (J = I, L, M) are given

coefficients. We note that the /K
J correspond to weights on the usual

interpolation functions hI , hL and hM .
The nodal degrees of freedom uJ are in general given by

uJ ¼ pnaJn ð14Þ
in which the pn are basis functions for the interpolation and the aJn

are the nodal unknowns. For the ‘‘standard” linear overlapping ele-
ments, we use the pn basis functions listed here in p



Fig. 8. Dissipation of the standard OFEM with Bathe time integration scheme: (a) CFL = 1; (b) CFL = 0.5; (c) CFL = 0.2; (d) CFL = 0.1.

Fig. 9. Dissipation of the EOFEM with Bathe time integration scheme: (a) CFL = 1; (b) CFL = 0.5; (c) CFL = 0.2; (d) CFL=0.1.
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Fig. 10. Problem description and used meshes for the two-dimensional tube: (a)
The tube; (b) The used uniform mesh; (c) The used distorted mesh.

Fig. 11. The acoustic pressure predicted using the standard FEM at: (a) t = 0.3 s; (b)
t = 0.7 s.
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p ¼ 1 x y½ � ð15Þ
However, for the solution of wave propagation problems we

enrich the overlapping finite elements by trigonometric basis func-
tions and use
p ¼

1; x; y;

cos 2px
kx

� �
; sin 2px

kx

� �
; cos 2py

ky

� �
; sin 2py

ky

� �
;

cos 2px
kx

þ 2py
ky

� �
; sin 2px

kx
þ 2py

ky

� �
;

cos 2px
kx

� 2py
ky

� �
; sin 2px

kx
� 2py

ky

� �
;

� � � ;
cos 2pqx

kx

� �
; sin 2pqx

kx

� �
; cos 2pqy

ky

� �
; sin 2pqy

ky

� �
;

cos 2pqx
kx

þ 2pqy
ky

� �
; sin 2pqx

kx
þ 2pqy

ky

� �
;

cos 2pqx
kx

� 2pqy
ky

� �
; sin 2pqx

kx
� 2pqy

ky

� �

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

ð16Þ

In Eq. (16), (x, y) denotes the coordinate values in the Cartesian
coordinate system, kx and ky are the fundamental wave lengths in
the x- and y-directions, and q denotes the degree of the trigono-
metric function. A larger q provides more accurate numerical solu-
tions, however this use may also lead to more computational cost
for a given accuracy. In this paper we consider q ¼ 1 and use
kx ¼ ky ¼ 2h in which h denotes the size of the overlapping ele-
ment. Note that we do not include the term xyð Þ in Eq. (16) as
was done in Ref. [14] because for the triangular element used this
basis seems sufficient.



Fig. 12. The acoustic pressure predicted using the standard OFEM at: (a) t = 0.3 s;
(b) t = 0.7 s.

Fig. 13. The acoustic pressure predicted using the EOFEM at: (a) t = 0.3 s; (b)
t = 0.7 s.
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4. Dispersion analysis

The numerical solutions of wave propagation problems suffer
from numerical dispersion errors. As a result, when using tradi-
tional finite element procedures, the solution accuracy in general
becomes worse with an increase of the considered wave number,
k ¼ 2p

k , where k is the (exact) wave length. Therefore, it is important
to examine the dispersion properties of a numerical technique. In
this section, we conduct a dispersion analysis using the uniform
mesh in a homogeneous medium shown in Fig. 2: here h is the
angle between the wave propagation direction and the x-axis of
the Cartesian coordinate system, and h is the nodal spacing of
the mesh. We consider the errors due to the spatial discretization
and the time integration. We use a homogeneous medium for
the analysis because each of the subregions we consider are of con-
stant material properties. The equations and results are based on
Ref. [14] but we give now also novel insights.

To show the capabilities of the enriched overlapping triangular
elements in solving wave propagations, we also give the numerical
results when using the standard finite element method and when
using the overlapping finite elements without including the har-
monic functions (which was not done in Ref. [14]). For convenience
of discussion, we use as abbreviations FEM, OFEM and EOFEM to
denote the results using the standard linear triangular element,
the ‘‘standard” overlapping finite element and the enriched over-
lapping finite element, respectively.

For the general wave equation in a homogeneous medium, also
used in Eq. (1), a basic plane wave solution is given by

u ¼ Aei kn�x�xtð Þ ð17Þ
in which A is the amplitude of the wave, n is a unit vector into the
wave propagation direction, x is the position vector of the consid-
ered point, t denotes time, k is the wave number given by
k ¼ x=c and x is the angular frequency.

4.1. Spatial discretization error

Eliminating the time dependency from the wave equation, the
well-known Helmholtz equation is obtained

r2uþ k2u ¼ 0 ð18Þ
for which the exact solution is, not considering boundary
conditions,



Fig. 14. The acoustic pressure predicted using the FEM, uniform mesh, with
different CFL numbers: (a) t = 0.3 s; (b) t = 0.7 s.

Fig. 15. The acoustic pressure predicted using the OFEM, uniform mesh, with
different CFL numbers: (a) t = 0.3 s; (b) t = 0.7 s.
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u ¼ Aeikn�x ð19Þ
Using the finite element interpolations given in Eq. (12) we

have

Ka� k2Ma ¼ 0 ð20Þ
in which a is the vector of unknown solution coefficients, K and M
are the stiffness and mass matrices, respectively.

If we use the np local basis functions in Eq. (16), the solution
vector has the following form

a ¼ âeikhn�x ð21Þ
in which kh is the numerical wave number, and the amplitude vec-
tor â is given by

â ¼ A1 A2 � � � Anp ; A1 A2 � � � Anp ; � � �	 
T ð22Þ

with the Aj (j ¼ 1; 2; � � � ; np) corresponding to the local basis
functions.

Since we consider a translationally invariant homogeneous
mesh without a boundary condition, the local basis function solu-
tion for each node has identical amplitude, that is, the vector
aI ¼ A1 A2 � � � Anp

	 
T for node I repeats itself for each node,
as shown in Eq. (22).

Substituting Eq. (21) into Eq. (20) and removing the common
factor, we obtain for a typical node

Dstiff � k2Dmass

h i
aI ¼ 0 ð23Þ

in which Dstiff and Dmass are Hermitian matrices corresponding to
the stiffness matrix K and mass matrix M, respectively.

The dimension of Dstiff and Dmass is np � np, and referring to
Fig. 2,

Dstiff ¼ Kn;n þ Kn;n�1e�ikhhcosh þ Kn;nþ1eikhhcoshþ
Kn;n�2eikhh cosh�sinhð Þ þ Kn;nþ2eikhh �coshþsinhð Þþ
Kn;n�3e�ikhhsinh þ Kn;nþ3eikhhsinhþ
Kn;n�4eikhh �cosh�sinhð Þ þ Kn;nþ4eikhh coshþsinhð Þ

ð24Þ

Dmass ¼ Mn;n þMn;n�1e�ikhhcosh þMn;nþ1eikhhcoshþ
Mn;n�2eikhh cosh�sinhð Þ þMn;nþ2eikhh �coshþsinhð Þþ
Mn;n�3e�ikhhsinh þMn;nþ3eikhhsinhþ
Mn;n�4eikhh �cosh�sinhð Þ þMn;nþ4eikhh coshþsinhð Þ

ð25Þ



Fig. 16. The acoustic pressure predicted using the EOFEM, uniform mesh, with
different CFL numbers: (a) t = 0.3 s; (b) t = 0.7 s.
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For a non-trivial solution of Eq. (23) we must have

det Dstiff � k2Dmass

h i
¼ 0 ð26Þ

and we can obtain for any given numerical wave number kh the cor-
responding exact wave number k.

The numerical wave number kh is in general different from the
exact wave number k due to dispersion error. We use the measure
k=kh to quantify the dispersion error induced by the spatial
discretization.

The dispersion properties of the standard finite element method
(FEM), the overlapping finite element discretization (OFEM) and
the proposed enriched overlapping finite element method (EOFEM)
are given in Fig. 3 as a function of h= kh=2ð Þ (=khh=p), where kh is the
numerical wavelength. The results show that the dispersion error
of the OFEM is clearly smaller than the error obtained using the
FEM, but the proposed EOFEM performs best, indeed its dispersion
error is almost zero for h/(kh/2) < 1. In addition, we also find that
the dispersion properties of the FEM are strongly influenced by
the direction of wave propagation. This numerical anisotropy is
relieved to some extent using the OFEM and is almost completely
removed in the EOFEM. These observations indicate that the
EOFEM behaves much better in reducing numerical dispersion aris-
ing from the spatial discretizations and can provide more accurate
solutions than using the standard FEM and OFEM (and referring to
Ref. [14] the enriched finite element method). The reasons are the
use of the overlapping finite elements and the use of harmonic
functions in the formulation of the EOFEM.

4.2. Temporal discretization error

The numerical solutions of transient wave propagation prob-
lems also suffer from a temporal discretization error due to the
time integration method used. Here we investigate the temporal
discretization error of the EOFEM when using the standard Bathe
time integration scheme [26,27].

Using the interpolation shown in Eq. (12) to solve the general
wave equation, we obtain

M€aþ c2Ka ¼ 0 ð27Þ
where

a ¼ âei khn�x�xhtð Þ ð28Þ
in which kh; xh and t are the numerical wave number, angular fre-
quency and time, which is given by the number of time steps used.

With Eq. (28), Eq. (27) can be re-written as

Dmass
€ea þ c2Dstiffea ¼ 0 ð29Þ

where ea is a function of time.
Diagonalizing Eq. (29) by its natural modes and using the stan-

dard Bathe time integration scheme, with two equal sub-steps per
time step, the following discretized wave equation over two time
steps can be obtained for a wave mode, see Ref. [14] for the
detailed derivation

tþ2Dtxþ ptþDtxþ qtx ¼ 0 ð30Þ
where p ¼ � 288�94x2Dt2

144þ25x2Dt2þx4Dt4
and q ¼ 144þ25x2Dt2

144þ25x2Dt2þx4Dt4
, with x ¼ kc

the angular frequency of the wave mode obtained from Eq. (26)
for a given kh.

Using the time dependency in Eq. (28) in Eq. (30), we have

e�ixhDt
� �2 þ pe�ixhDt þ q ¼ 0 ð31Þ

From Eq. (31), the numerical angular frequency xh is obtained
and then the total dispersion error denoted by the normalized
numerical phase velocity can be calculated using

ch
c
¼ xh=kh

c
ð32Þ

Note that there are two complex conjugate roots for Eq. (31),
hence the discrete solution to Eq. (30) has the following form

ah ¼ c1e
�nhþið ÞxhDt þ c2e

�nh�ið ÞxhDt ð33Þ
in which nh is the numerical damping ratio, c1 and c2 are two unde-
termined coefficients.

From Eqs. (31) and (33), the following equations can be
obtained

xhDt ¼
arctan �

ffiffiffiffiffiffiffiffiffiffi
4q�p2

p
p

� �
; for Dt < Dt�

arctan
ffiffiffiffiffiffiffiffiffiffi
4q�p2

p
p

� �
; for Dt > Dt�

8>>><>>>: ð34aÞ

nh ¼ �1
2
ln qð Þ
xhDt

ð34bÞ

in which 4q� p2
� ���

Dt¼Dt� ¼ 0 and the percentage amplitude decay
(AD) is given by

AD ¼ 1� e�2pnh
� �� 100% ð35Þ

KJ Bathe
Highlight

KJ Bathe
Highlight

KJ Bathe
Highlight



Fig. 17. The square pre-stressed membrane of different media: (a) Geometry description of the considered square domain; (b) The used uniform mesh; (c) The pre-defined
paths.
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Using Eq. (30), we find that the parameters p and q are functions
of xDt, so the solution (namely xhDt) to Eq. (31) is also a function
of xDt and can be expressed as

xhDt ¼ f xDtð Þ ð36Þ
and note that

xDt ¼ kh
cDt
h

¼ khCFL ð37Þ

in which CFL ¼ cDt=h with h (as defined above already) being the
size of the overlapping element.

Hence Eq. (32) can be re-written as

ch
c
¼ xh=kh

c
¼ xhDt

khcDt
¼ xhDt

khhCFL
¼ f xDtð Þ

khhCFL
¼ f khCFLð Þ

khhCFL
ð38Þ

For a small CFL number we have

f xDtð Þ ¼ arctan xDt
144� 5x2Dt2

144� 47x2Dt2

� �
¼ arctan khCFL

144� 5 khCFLð Þ2
144� 47 khCFLð Þ2

" #
ð39Þ
Using the Taylor series expansion, we obtain

ch
c

� �
BM ¼ 1

khhCFL
f 0ð Þ þ f 0 0ð Þ khCFLð Þ þ f 00 0ð Þ

2! khCFLð Þ2 þ � � �
h i

¼ k
kh

1� 1
24

khCFLð Þ2 þ 61
17280

khCFLð Þ4 þ � � �

 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Temporal discretization error

ð40Þ

As a side result, using similar steps, we can obtain for the trape-
zoidal rule [26] a similar expression

ch
c

� �
TR

¼ k
kh

1� 1
12

khCFLð Þ2 þ 1
80

khCFLð Þ4 þ � � �
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Temporal discretization error

ð41Þ

We note that Eq. (32) can also be written as

ch
c
¼ xh=kh

x=k
¼ k

kh

xh

x
¼ k

kh

T
Th

ð42Þ

in which T and Th are the exact and numerical period of the wave
mode, respectively.

Eqs. (40)–(42) show that the total wave speed error ch=c can be
split into two different parts: the first part (namely k=kh) is the



Fig. 18. Comparisons of the displacement solutions using the FEM at t = 0.4 s: (a)
Path 1 and Path 2; (b) Path 3 and Path 4.

Fig. 19. Comparisons of the displacement solutions using the standard OFEM at
t = 0.4 s: (a) Path 1 and Path 2; (b) Path 3 and Path 4.
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numerical error due to the spatial discretization and the second
part is the numerical error due to the temporal discretization.
The spatial dispersion error depends only on the spatial discretiza-
tion (that is, the spatial interpolation and mesh used) while the
temporal dispersion error is only related to the temporal dis-
cretization (that is, the time integration scheme and time step
used). For a given mesh pattern, the spatial dispersion error k=kh
can be determined by Eq. (26), while the temporal dispersion error
tends to zero by decreasing the time step (that is, as CFL? 0).
Hence, the total wave speed error ch=c converges to the spatial dis-
cretization error k=kh as CFL? 0.

We also note from Eq. (40) that the function of the temporal
error f khCFLð Þ is a monotonic function with respect to khCFL, hence
the total wave speed error ch=c convergesmonotonically to the spa-
tial discretization error k=kh as the time step tends to zero. Since
the spatial dispersion error of the EOFEM is almost zero in all direc-
tions when the normalized numerical wavenumber khh=p < 1 (see
Fig. 3), the accuracy of the numerical solutions using the EOFEM is
monotonically improved by using a smaller CFL. The same conclu-
sion also holds for the trapezoidal rule, which however, shows
other significant disadvantages [7,28].

Figs. 4–6 give the total dispersion error using the standard FEM,
standard OFEM and the present EOFEM for different CFL numbers.
We see that, indeed, the total wave speed error ch=c converges
monotonically to the spatial discretization error k=kh as the CFL
number decreases. This is an important property for the solution
of wave propagation problems in practical analysis because, firstly,
the accuracy of the numerical solution of a single wave (traveling
at one wave speed) is increased by simply refining the mesh and
decreasing the time step, and secondly, this monotonic increase
in accuracy also holds when multiple waves with different speeds
are calculated in the solution of complex wave propagation
problems.

Figs. 7–9 give the dissipation properties of the three mentioned
methods as a function of the CFL numbers used. We see that the
amplitude decay using any of the methods decreases as a smaller
CFL number is used, however, the amplitude decay using the
EOFEM is smallest, has the desired monotonic increase with wave
number, and, importantly, is almost insensitive to the direction of
wave propagation.
5. Numerical examples

In the previous section, we examined the dispersion and dissi-
pation properties of the EOFEM in the solution of wave propagation



Fig. 20. Comparisons of the displacement solutions using the EOFEM at t = 0.4 s: (a)
Path 1 and Path 2; (b) Path 3 and Path 4.

Fig. 21. Snapshots of the displacement distributions using the FEM at: (a) t = 0.2 s;
(b) t = 0.3 s; (c) t = 0.4 s.
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problems. Although the investigation was based on using a uni-
form mesh pattern, the conclusions have significance for solving
wave propagation problems for which non-uniform meshes need
generally be used.

In this section, we solve several wave propagation problems to
illustrate the performance of the EOFEM with the Bathe time inte-
gration scheme. We consider wave propagations in inhomoge-
neous media with reflected and transmitted waves and compare
the predictive capabilities with those of the standard FEM and
OFEM. In all analyses we use the triangular elements discussed
above and fixed reasonable meshes, that is, we do not include a
study of using different meshes and element sizes. Also, in all
cases, the solution times considered are such that the waves do
not reach the boundary of the problem domain, hence non-
reflecting boundary conditions are not used in the models.
5.1. Pressure waves traveling in a tube

We consider a two-dimensional tube of length 1 m and width
0.1 m. As shown in Fig. 10a, the tube is filled with two different
acoustic fluid media (q is the density of the fluid medium and c
is the wave speed). The physical parameters of the two fluid media
are q1 ¼ q2, c1 ¼ 0:5 m/s and c2 ¼ 1 m/s. The interface is located at
r = 0.5 m. An excitation pressure u ¼ 0:8sin 20ptð Þ, t 2 0; 0:05½ � is
imposed at the bottom of the tube. We impose slip boundary con-
ditions along the vertical walls, hence in essence we have a one-
dimensional wave propagation problem and the analytical solution
can be readily obtained. For the numerical solutions we use uni-
form and distorted meshes (see Fig. 10b and c) with a mesh of
2� 5� 50 triangular elements. For the distorted mesh we use
the same characteristic element length h as for the undistorted
mesh, h = 0.02 m, and for the CFL number we use c = 1 m/s.

Fig. 11 gives acoustic pressure results for times t = 0.3 s and
t = 0.7 s obtained using the standard FEM and CFL = 0.1. In
Fig. 11b, the small peak corresponds to the reflected wave while



Fig. 22. Snapshots of the displacement distributions using the OFEM at: (a) t = 0.2 s;
(b) t = 0.3 s; (c) t = 0.4 s.

Fig. 23. Snapshots of the displacement distributions using the EOFEM at: (a)
t = 0.2 s; (b) t = 0.3 s; (c) t = 0.4 s.
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the large peak corresponds to the transmitted wave through the
interface. We see that the computed results are not accurate, but
the results using the uniform mesh are slightly better than those
employing the distorted mesh. The corresponding results using
the OFEM and EOFEM are presented in Figs. 12 and 13. The results
using the OFEM are better than the FEM results but the EOFEM
results are best and agree well with the exact solution. We also
note that the EOFEM results are almost unchanged if instead of
the uniform mesh we use the distorted mesh.

To investigate the monotonic convergence property, we use dif-
ferent CFL numbers and obtain the results shown in Figs. 14–16.
We see that for the given meshes the EOFEM results can be
improved by using a smaller CFL number while this property does
not hold for the standard FEM and only somewhat for the OFEM. As
mentioned earlier, the monotonic convergence of the solution (as
the mesh is refined and the CFL decreases) is an important property
because it renders the EOFEM very suitable for solving transient
wave propagation problems in inhomogeneous media containing
different types of waves traveling at different speeds.

5.2. A two-dimensional square domain with inhomogeneous media

Fig. 17a shows the 2D problem considered: a square pre-
stressed membrane (length L = 1 m) of two different media. The
wave speed in the two different media are c1 ¼ 2 m/s and
c2 ¼ 1 m/s, and the interface is at y = 0.5 m. A uniform triangular
mesh of 2� 50� 50 elements is employed to discretize the prob-



Fig. 24. The displacement predicted using the FEM with different CFL numbers at
t = 0.4 s: (a) Path 1; (b) Path 3.

Fig. 25. The displacement predicted using the OFEM with different CFL numbers at
t = 0.4 s: (a) Path 1; (b) Path 3.
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lem domain (see Fig. 17b). A concentrated Ricker wavelet force Fc

is imposed at point A
Fc ¼ 0:4 1� 2p2f 2p t � tsð Þ2
h i

exp �p2f 2p t � tsð Þ2
� �

ð43Þ
with the peak frequency f p = 10 Hz and the time shift ts = 0.1 s. For
the CFL number we use h = 0.02 m and c = 1 m/s.

To compare computed results we focus on the paths shown in
Fig. 17c. The predicted displacement solutions at t = 0.4 s and using
CFL = 0.1 with the three methods are plotted in Figs. 18–20. The
results include a reference solution obtained with a very fine mesh
using the EOFEM with CFL = 0.1. The high peak is the original wave
from the source and the lower peak corresponds to the wave
reflected by the interface of the two different media.

We see that the results using the EOFEM are much better than
the results obtained with standard FEM and are also better than
those using the OFEM.

Figs. 21–23 present several snapshots of the displacement dis-
tributions obtained using the three methods at different observa-
tion times. It is clearly seen that the EOFEM solutions are
smoother and better than those obtained with the standard FEM
and OFEM solutions.

Finally, we examine the convergence of the three methods as a
function of the CFL number. The results are given in Figs. 24–26.
We see again that the EOFEM shows monotonic convergence in
the solution of the problem while the standard FEM and OFEM
do not display this property.
5.3. Two-dimensional acoustic wave scattering by a circular object

Next we consider the acoustic wave propagation in a square
pre-stressed membrane containing four circular regions; the exte-
rior and interior domains of the circular regions are of different
media, see Fig. 27. The wave source is at the center of the square
domain and the concentrated excitation force is a Ricker wavelet
of magnitude 0.4, peak frequency f p = 10 Hz and time shift
ts = 0.1 s. Due to symmetry, only the domain 0;1½ � � 0;1½ � is mod-
elled in the analysis. The wave speeds in the two considered media
are c1 = 2 m/s and c2 = 1 m/s. Along each side of the square domain
40 triangular elements are used with element size h = 0.025 m. To
compare the numerical solutions, we use the three lines shown in



Fig. 26. The displacement predicted using the EOFEM with different CFL numbers
at t = 0.4 s: (a) Path 1; (b) Path 3.

Fig. 27. The two-dimensional scalar wave propagation in a pre-stressed membrane: the problem description and used triangular mesh.

Fig. 28. The displacement solutions of the two-dimensional scalar wave scattering
problem using OFEM and EOFEM at observation times: (a) t = 0.4 s; (b) t = 0.7 s.
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Fig. 29. Displacement distributions of the membrane along the directions h ¼ 22:5
�

and h ¼ 67:5
�
using the EOFEM at observation time t = 0.8 s.
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Fig. 27: the red, black and green lines are for the directions h=22:5
�
,

h=45
�
and h=67:5

�
, respectively. In this analysis we only use the

OFEM and the EOFEM. For the CFL number we use h = 0.025 m
and c = 1 m/s.

The displacement solutions at observation times t = 0.4 s and
t = 0.7 s using the OFEM and EOFEM with CFL = 0.1 are shown in
Fig. 28 along the direction h = 45

�
. The magenta lines in Fig. 28 rep-

resent the positions of the interfaces between the different media,
hence we can identify the reflected and transmitted wave compo-
nents in the solutions. The reference solution in the figure is
obtained using the EOFEMwith a very fine mesh. We see that there
Fig. 30. Snapshots of the displacement distributions predicted using the OFEM at
exist spurious oscillations in the OFEM based solutions and the
EOFEM based solutions are much better.

The displacement predictions along the two other directions
(h=22.5� and h = 67.5�) using the EOFEM at observation time
t = 0.8 s are given in Fig. 29. We see that the present EOFEM pro-
vides almost identical results in the different wave propagation
directions.

Figs. 30 and 31 give snapshots of the displacement distribution
solutions obtained using the OFEM and EOFEM at different obser-
vation times and we see again that the EOFEM provides more accu-
rate solutions.

Finally, we use decreasing CFL numbers to investigate the
monotonic convergence property of the solutions. Figs. 32 and 33
give the displacement solutions along the direction h = 45

�
using

the OFEM and EOFEM at observation times t = 0.5 s and t = 0.7 s.
We find again that the EOFEM shows monotonic convergence as
we decrease the CFL number.
6. Concluding remarks

We focused on employing the EOFEM with the Bathe time inte-
gration method to solve transient wave propagation problems in
inhomogeneous media. We investigated the performance and
properties of the approach in comparison to the use of the standard
FEM and the OFEM.

A dispersion analysis shows that the total dispersion error con-
tains contributions from the spatial discretization and the tempo-
ral discretization. As the time step size using the Bathe time
integration scheme tends to zero (that is, CFL? 0), the temporal
dispersion error tends to zero and the total dispersion error con-
verges to the spatial dispersion error.

The spatial dispersion error using the standard FEM and OFEM
can be large, while the EOFEM shows in the uniform mesh ana-
different observation times: (a) t = 0.6 s; (b) t = 0.7 s; (c) t = 0.8 s; (d) t = 0.9 s.



Fig. 31. Snapshots of the displacement distributions predicted using the EOFEM at different observation times: (a) t = 0.6 s; (b) t = 0.7 s; (c) t = 0.8 s; (d) t = 0.9 s.

Fig. 32. Displacement distributions of the membrane along the direction h ¼ 45
�

using the OFEM with decreasing CFL numbers: (a) observation time t = 0.5 s; (b)
observation time t = 0.7 s.

Fig. 33. Displacement distributions of the membrane along the direction h ¼ 45
�

using the EOFEM with decreasing CFL numbers: (a) observation time t = 0.5 s; (b)
observation time t = 0.7 s.
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lyzed almost no spatial dispersion error for the normalized numer-
ical wavenumber khh=p < 1. Hence the solution accuracy can be
improved by decreasing the CFL number, and accurate results are
obtained with a reasonable sufficiently fine mesh (like in static
analysis using the standard finite element method). Hence the
use of the EOFEM with the Bathe time integration scheme shows
monotonic convergence to the exact solution for transient wave
propagation problems with multiple waves, and numerical aniso-
tropy is small, while the standard FEM and the OFEM do not dis-
play these characteristics. While we found these properties to
hold for the simple problems solved, it is likely that the properties
are also seen in complex analyses.

The EOFEM performs also better than the enriched FEM [14].
Due to the above good features, the EOFEM shows much promise
in solving complex wave propagation problems in practical engi-
neering, such as wave propagations in anisotropic media and mul-
tiple waves travelling in laminated composite structures.

However, there are many research tasks that are still open for
investigation. We have used here only the EOEFM based on trian-
gular element discretizations, other OFEM with enrichments might
be developed and mathematical convergence analyses would be
very valuable.
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